- Home
- Materials
Filters
Sort
-
-
Filter Clear filters
-
-
Scientific topic
- Biomathematics1
- Cloud computing1
- Computational biology1
- Computer science1
- Dynamic systems1
- Dynamical systems1
- Dynymical systems theory1
- Graph analytics1
- HPC1
- High performance computing1
- High-performance computing1
- Mathematical biology1
- Mathematics1
- Maths1
- Monte Carlo methods1
- Multivariate analysis1
- Simulation experiment1
- Theoretical biology1
- Show N_FILTERS more
-
-
-
Keyword
- Python
- Bioinformatics1
- Computational modelling1
- DES1
- Data Science1
- Data analysis1
- Data processing1
- Docking1
- FAIR1
- Modeling1
- Next generation sequencing1
- Ngs1
- Open science1
- Reproducible Science1
- data visualization1
- data-driven modeling1
- discrete-event simulation1
- life sciences1
- molecular dynamics1
- object-oriented programming1
- Show N_FILTERS more
-
-
-
Difficulty level
- Advanced1
- Show N_FILTERS more
-
-
-
Licence
- MIT License1
- Show N_FILTERS more
-
-
-
Target audience
- computational scientists
- Biologists7
- beginner bioinformaticians7
- Biologists, Genomicists, Computer Scientists6
- bioinformaticians4
- Students3
- Clinicians2
- PhD students2
- programmers2
- Beginner1
- Bench biologists1
- Bioinformaticians1
- Biomedical Researchers1
- Computational biologists1
- Data Managers1
- Data Scientists1
- Life Science Researchers1
- Life scientists1
- Life scientists, bioinformaticians and researchers who are familiar with writing Python code and core Python elements, and would like to use it in their daily data exploration and visualization tasks.1
- PhD1
- PhD Students1
- Research Scientists1
- Scientists1
- post-docs1
- software engineers1
- Show N_FILTERS more
-
-
-
Resource type
- API reference1
- Jupyter notebook1
- Tutorial1
- examples1
- Show N_FILTERS more
-
- Show archived materials