- Home
- Materials
Filters
Sort
-
-
Filter Clear filters
-
-
Content provider
- IFB French Institute of Bioinformatics1
- NBIS1
- Show N_FILTERS more
-
-
-
Keyword
- Data analysis
- Bioinformatics6
- Python4
- data management4
- Programming3
- Python biologists3
- Reproducibility3
- metadata3
- scRNA-seq3
- RNA-Seq2
- CWL2
- EeLP2
- FAIR2
- Nextflow2
- Protein identification2
- Reproducible Science2
- Single Cell technologies2
- Workflows2
- commonwl2
- data sharing2
- eLearning2
- linked data2
- R-programming1
- Variant-calling1
- Allbio1
- Biopython1
- Computational modelling1
- Container1
- Containers1
- DES1
- DSL21
- Data Life Cycle1
- Data Science1
- Data management plan1
- Data preserving1
- Data processing1
- Data publishing1
- Data storage1
- Farm animals1
- Findability of data and code1
- Identifying data and code1
- Javascript1
- Kinetic modeling1
- Mass spectrometry1
- Metabolomics1
- NGS bioinformatics1
- Next generation sequencing1
- Ngs1
- Ngs bioinformatics1
- Open science1
- PID metadata1
- Persistent Identifiers1
- Protein Mass Spectrometry1
- Proteomics1
- Python API pyhandle1
- Qtl1
- Record parsing1
- Referencing data and code1
- Rnaseq1
- Singularity1
- Structural variations1
- Transcription factors1
- Wikidata1
- common workflow language1
- coronavirus1
- data annotation1
- data reuse1
- data stewardship1
- data visualization1
- data warehouse1
- data-driven modeling1
- discrete-event simulation1
- genomics1
- legal framework1
- licensing1
- life science standards1
- meta analysis1
- object-oriented programming1
- ontologies1
- proteomics1
- quantitative proteomics1
- reaction kinetics1
- system relevant metadata for data1
- transcriptomics1
- Show N_FILTERS more
-
-
-
Difficulty level
- Intermediate1
- Not specified1
- Show N_FILTERS more
-
-
-
Target audience
- bioinformaticians
- PhD candidate8
- Researchers4
- Bioinformaticians2
- Biologists2
- Graduate students2
- PhD Students2
- Students2
- Anyone1
- Life Science Researchers1
- Life scientists1
- Life scientists, bioinformaticians and researchers who are familiar with writing Python code and core Python elements, and would like to use it in their daily data exploration and visualization tasks.1
- PhD1
- PhD candidates1
- Post Docs1
- Post docs1
- computational scientists1
- life scientists1
- postdocs1
- software developers, bioinformaticians1
- software engineers1
- Show N_FILTERS more
-
-
-
Resource type
- Training materials2
- Show N_FILTERS more
-
- Show archived materials